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1. Aim 7 

In this study, we develop a deep neural network (DNN) model to retrieve the vertical profiles of Chl a from surface- 8 

ocean data which are equivalent to the average value within the first 20 m water depth. Our DNN model has at least 3 9 

hidden layers in the algorithm. Compared to the shallow ANN, such an improvement theoretically helps to improve 10 

performance for prediction capability. Rather than using the sigmoid activation function, we use a Gaussian radial basis 11 

activation function in the DNN model, which is one of the most frequently used radial functions in the literature. We 12 

train the DNN model by inputting sea surface temperature (SST) and surface Chl a from Biogeochemical‐Argo (BGC- 13 

Argo) floats. We apply the DNN model to the northwestern Pacific Ocean and compare the estimated vertical Chl a 14 

profiles and associated SCM characteristics with observations in different regions and seasons. Finally, we examine the 15 

prediction capability of our DNN model in retrieving vertical Chl a profiles from remote-sensing data in the 16 

northwestern Pacific Ocean. 17 

2. Procedure 18 

2.1 Improved DNN model 19 

The DNN model is an extension of a conventional ANN, with at least two hidden layers between the input and 20 

output layers. Because each node in the hidden layer makes both associations and grades of the input to determine the 21 

output, stacking more of these layers upon each other benefits more from multiple hidden layers (Figure 1). After 22 

processing the signals by the neurons in the hidden layer, the DNN passes them to the output layer. Then, by comparing 23 

and calculating the output error with the target, backward propagation is used to adjust the weight of signals in the 24 

hidden layers and further reduce the error using the optimisation algorithm.  25 

 26 
Figure 1. Structure of the deep neural network (DNN). The input elements of DNN are longitude, latitude, time, sea surface 27 

temperature (SST), sea surface Chl a, water depth. The output is the vertical distribution of Chl a concentration over the water 28 

depth of 0–300 m. b is the bias term in the hidden layer. The prior information of nonlinear activation function (f) connects the 29 

hidden layers to the output. 30 

In the calculation of SCM characteristics, we improved the existing DNN model in the following two aspects. First, 31 

we improve the capability of model for the calculation of SCM depth by replaced the bias term 𝑏 (that is, the intercept 32 

term) from random values to annual mean of SCM depths (Equation 1).  33 

max( )
,

max( )
SCM

avg z
b

z
                                      (1) 34 

where z  is the water depth, max(z) is set to 300 m by assuming that there is no Chl a below 300 m depth, and max( )avg z  35 

is the annual mean of SCM depth ( maxz ). 36 

In the second aspect, we improve the calculation accuracy of model for the SCM intensity and thickness. 37 

Considering the unimodal chlorophyll profiles, a Gaussian radial basis function is substituted for the sigmoid function 38 

as a nonlinear activation function (f, Equation 2) in the original DNN model to amplify the signals within the SCM layer. 39 



 

The advantage of Gaussian radial basis activation function is that it is similar to quadratic function for the center values 40 

of input variables, while the sigmoid activation function is similar to linear function about the moderate inputs. 41 
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where 
j

X  is the X value of the jth output in the hidden layer, and 
SCMb  is the bias term computed by the annual mean 43 

of SCM depth (Equation 1). The Gaussian radial basis activation function helps to absorb the information of the annually 44 

averaged SCM depth and, hence, further extract the SCM features.  45 

Consequently, a DNN model with at least 2 hidden layers was applied due to its availability in capturing the 46 

nonlinear relationships, and the annual averaged SCM depth is incorporated into both the bias term and the Gaussian 47 

radial basis activation function to improve the capability in retrieving the SCM characteristics. We name this improved 48 

model as IDNN model.  49 

2.2 BGC-Argo Data for the IDNN Model 50 

The in situ data for the IDNN model were collected from 16 BGC-Argo profiling floats in the northwestern Pacific 51 

Ocean (https://biogeochemical-argo.org/). Figure 2 plotted the trajectories of the 14 BGC-Argo profiling floats within 52 

123 °E–180 °E, 12 °N–48 °N, where a SCM feature was observed. Figure A1 showed the locations of vertical Chl a profiles 53 

observed from 16 BGC-Argo floats in the absence of a SCM. The acquired 2409 vertical Chl a profiles, covering four 54 

seasons during the period from July 2017 to April 2021, were used in our study after quality control to remove aberrant 55 

data caused by electronic noise.  56 

 57 
Figure 2. Locations and measuring months of 14 BGC‐Argo profiles with a subsurface chlorophyll maximum (SCM) feature in the 58 

northwestern Pacific Ocean.  59 

Most vertical profiles of Chl a showed a unimodal distribution, while the remaining minors showed either 60 

increasing or decreasing Chl a with depth. Here, focusing on the SCM patterns, we structure each BGC-Argo vertical 61 

profile based on a Gaussian function assumption (Equation 3). 62 

2
max

2

( )

2( )

z z

Chl z Ae 




 ,                                   (3) 63 

where 𝜎 is its standard deviation, A is the amplitude of the Gaussian curve, and maxz  is the location of the amplitude. 64 

To quantify the vertical scale of the SCM layer, 2σ was used to represent the SCM thickness. Because the upper layer of 65 

the SCM (
maxz  ) must be inside the water, it is set as a nonnegative value. That is, if 

max 0z   , the upper layer of 66 

the SCM is set to the sea surface (0 m). In addition, the SCM intensity refers to the peak value of Chl a concentration (A). 67 

The values of the Gaussian parameters (𝜎, A and zmax) were obtained by fitting all observed vertical Chl a profiles, 68 

which can be used to filter out Chl a profiles with no significant SCM characteristics via the following three steps. First, 69 

profiles with the values of parameter 𝜎 ranging from the lower limit of the data value to half of the upper limit (0–48 70 

m), are kept, thereby leaving 1676 profiles. Second, parameter A (the peak values of Chl a obtained from Gaussian fitting) 71 

was assumed to be at least twice the surface Chl a concentrations. Meanwhile, values larger than the upper limit (2.2 72 

mg m-3) were neglected as outliers. This step excluded 328 profiles. Third, 𝑧𝑚𝑎𝑥  values are limited to depths above 200 73 

m. Finally, after visually reviewing all the filtered profiles, 1342 out of the total 2409 profiles were retained in the 74 

following analysis. Consequently, the remaining vertical Chl a profiles present a significant SCM characteristics. 75 

2.3 Satellite Data for the IDNN Model  76 

To evaluate the performance of IDNN reconstruction using remote-sensing data, the MODIS Level 3 standard 77 

mapped image monthly Chl a and SST database with a 9 km spatial resolution were downloaded 78 

(http://apdrc.soest.hawaii.edu/dods/public_data/satellite_product/MODIS_Aqua/) and used to extract the input values 79 

for the IDNN model. 80 

2.4 Training Process 81 

https://biogeochemical-argo.org/


 

In our IDNN model, SST, sea surface Chl a, associated geo-location (latitude, longitude) and observation time, and 82 

water depth were selected as input variables (Figure 1), which are similar to the study by Sammartino et al.  83 

The IDNN model was trained in each BOX, respectively. 75% of the input data and vertical profiles of Chl a from 84 

BGC-Argo floats in each BOX were segmented and fed into the IDNN model as the training set, which was selected 85 

randomly. During the training process, 15% of the training set was randomly selected as a validation set to verify 86 

whether the IDNN model was over-fitted. According to the performance of the validation set, the parameters of the 87 

IDNN model were determined using a grid search.  88 

To evaluate the errors between the IDNN output and the observed value, the determination coefficient (R2), 89 

correlation coefficient (𝜌), root mean square error (RMSE), mean absolute percentage error (MAPE), and mean bias error 90 

(MBE) are introduced as cost functions. The R2 and RMSE values were used as performance indicators to evaluate the 91 

effectiveness of the developed models. MAPE and MBE capture the average difference between the estimated and 92 

observed values. 93 

3 Results and Discussion  94 

3.1 IDNN-retrieved Chl a Vertical Profiles 95 

After evaluating the IDNN performance on a training set, we applied the IDNN model to a test set. Here, the test 96 

set contains 25% of the total BGC-Argo surface Chl a and SST datasets. In the testing phase of the IDNN model, a trained 97 

network was used for forward estimation. The data on the test set are normalised in a similar manner to that in the 98 

training set, with the network output being inversely normalised to the original unit. As shown in Figure 3, the modelled 99 

Chl a concentrations from the test set are closely comparable with the observed values for the upper 300 m in each BOX. 100 

 101 
Figure 3. (a–c) Scatter plot of observed Chl a concentration (x-axis) and estimated Chl a value (y-axis) in BGC-Argo test set in BOXes 102 

1-3. The black dashed line is the bisector of the first quadrant, i.e., y=x. (d–f) The mean of observed value (blue line) and the mean of 103 

IDNN predicted values (orange line) in each BOX. The pink and green shades are the standard variance of the model results and 104 

observations, respectively, which overlap and form the brown shade. (g) The mean relative bias as a function of the adjusted depth 105 

between observed and the IDNN predicted Chl a in the test set for the three BOXes. The adjusted depth is defined as the differences 106 

between the observed SCM depth and the modeled one. 107 

The statistical indices calculated for the IDNN assessment from the test set are listed in Table 1. The statistical 108 

results indicate a robust prediction capability of the IDNN in three BOXes. 109 

Table 1. Statistical results of the comparison between the observed Chl a values and the predicted Chl a concentration by the IDNN 110 

models using BGC-Argo data. R2 refers to the Determination Coefficient, 𝜌 to the Pearson’s Correlation Coefficient, RMSE denotes 111 

the Root Mean Square Error, and MAPE represent the Mean Absolute Percentage Error. 112 

Index 
Region 

BOX1 BOX2 BOX3 

R2 0.77 0.72 0.71 

𝜌 0.89 0.88 0.87 

RMSE 0.0040 0.025 0.11 

MAPE 0.036 0.073 0.13 

3.2 IDNN-retrieved SCM Characteristics  113 



 

We apply the IDNN model to calculate the seasonality of SCM characteristics. As shown in Figure 4, the regionally 114 

averaged Chl a profile predicted by the IDNN model from surface data is comparable to the observations for four 115 

seasons.  116 

 117 
Figure 4. Aggregated chlorophyll vertical profiles from the test set in terms of seasons in BOX1 (a-d), in BOX2 (e-h), and in BOX3 (i- 118 

k). The blue and red solid lines represent the mean of observed value and the mean of IDNN predicted Chl a, respectively. The pink 119 

and green shades are the standard variance of the model results and observations, respectively, which overlap and form the brown 120 

shade. 121 

Figure 5 shows that the mean vertical Chl a profile inferred by the IDNN from remote-sensing data agrees well with the mean 122 

BGC-Argo profile in each BOX, validating the good prediction accuracy of the IDNN model in the northwestern Pacific Ocean. 123 

 124 

Figure 5．Comparison of the mean profiles of observed values (blue line), IDNN predictions (orange line) and MLP-1 predictions 125 

(green dash line) inferred from remote-sensing data in three BOXes.  126 

4 Conclusion 127 

In this study, for the first time, we developed and applied an improved DNN model with Gaussian radial basis 128 

activation function, to retrieve the vertical structure of Chl a concentration and the associated SCM characteristics in the 129 

northwestern Pacific Ocean. The annually averaged SCM depth was incorporated into the bias term and the Gaussian 130 

radial basis activation function via the training process of the DNN model, which improved the prediction capability 131 

of model from surface-ocean Chl a data and SST. The vertical structure of Chl a concentration and SCM characteristics, 132 

which were estimated by our DNN model, showed a good agreement with observations in different seasons and along 133 



 

the trajectory of BGC-Argo floats. Compared to a series of neural network methods, our IDNN model with Gaussian 134 

radial basis activation function captured the SCM characteristics in the northwestern Pacific Ocean, especially in 135 

subpolar areas with high surface Chl a concentrations. Moreover, the SCM characteristics were reproduced well by our 136 

IDNN model inputting remote-sensing surface data.   137 

5 Publication/conference presentation 138 

The article “"Improved Perceptron of Subsurface Chlorophyll Maxima by a Deep Neural Network: A Case Study with  139 

BGC-Argo Float Data in the Northwestern Pacific Ocean" ” has been published in Remote Sensing 2022, 14(3), 632; 140 

https://doi.org/10.3390/rs14030632 141 

6 Perspectives in the future  142 

This study used surface-ocean Chl a and SST as input variables for the IDNN model to reconstruct the non-uniform 143 

vertical Chl a profiles. A future improvement of our model is to employ additional input variables such as 144 

photosynthetically active radiation, light attenuation coefficient, and oceanographic parameters (e.g., sea surface height 145 

and wind components) that potentially affect SCM characteristics. Meanwhile, the training process of present IDNN is 146 

pixel-to-pixel without considering temporal variations of neighboring pixels, which is similar to other shallow ANN 147 

models. Thus, a deep learning technique with a combination of convolution neural network (CNN) and a long short- 148 

term memory (LSTM) neural network will be adopted to predict the target by considering the time series of the most 149 

correlated surrounding pixels. 150 

 151 
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