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Abstract: Yellow Sea green tides have become recurring marine ecological disasters, making 

accurate forecasting essential for early warning and preventive measures. This study incorporates a 

stochastic perturbed parameterization scheme into the Yellow Sea Green Tide Drift Model to create 

an ensemble forecast of the drifting path of green tides, using the 2016 Yellow Sea green tide event 

as a case study. The ensemble forecast experiment demonstrates that this approach effectively 

simulates the drift characteristics of the 2016 green tide. Validation with Moderate Resolution 

Imaging Spectroradiometer (MODIS) remote sensing data reveals that the ensemble forecast 

significantly enhances the forecasting performance for periods exceeding 15 days, with the average 

absolute error in the forecast path reduced by 32%. 
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1 Introduction 

Green tides are a new type of ecological disaster caused by the excessive proliferation of large 

marine green algae. Every year at the turn of spring and summer, the Yellow Sea in China 

experiences a massive outbreak of green tides, which are caused primarily by Ulva prolifera. 

Currently, the green tides in the Yellow Sea have evolved into normalized marine ecological 

disasters in the region (Anderson et al., 2002; Pang et al., 2010). The Yellow Sea green tide is a 

typical transregional marine ecological disaster. Its origin and the location where it becomes a 

disaster are in different sea areas. Its growth and decay process usually lasts for 2–3 months, are 

involves complex marine processes (Qiao et al., 2009; Liu et al., 2013). Large-scale outbreaks of 

green tides not only destroy the marine ecosystem around the Yellow Sea but also significantly affect 

industries, such as maritime events, aquaculture, tourism, and shipping in coastal cities, resulting in 

serious economic losses (Qiao et al., 2009; Ye et al., 2011; Liu et al., 2013; Paumier et al., 2018; 

Zhao et al., 2018; Zhan et al., 2024). 

In the face of the ecological disaster of green tides in the Yellow Sea, monitoring is currently 

carried out mainly through onsite observations and satellite remote sensing. Short-term assessments 

of the extent of green tide outbreaks are subsequently performed on the basis of the green tide 

images captured onsite and the inverted remote sensing images, followed by preemptive harvesting 

organized by local governments (Qiao et al., 2009; Liu et al., 2017; Xing et al., 2019; Zhan et al., 

2024). However, the arrival time and location of green tides vary greatly each year, and relying 

solely on monitoring images makes it difficult to judge and predict their drifting paths over the long 

term (Liu et al., 2015; Xing et al., 2019; Zhan et al., 2024). Therefore, it is extremely necessary to 

build a forecast model for the drifting path of green tides in the Yellow Sea to predict their drifting 

direction and changes in advance. Over the years, scholars have attempted to establish various green 



tide drift models on the basis of different ocean dynamic models (Lee et al., 2011; Bai et al., 2013; 

Ji et al., 2018; Zhao et al., 2018; He et al., 2021; Zhou et al., 2021; Gao et al., 2022; Wang et al., 

2022; Sheng et al., 2023). These models are mostly based on the Lagrangian method, treating the 

floating sea mustard on the sea surface as multiple mass points, driven by the wind on the sea surface 

and the current in the sea surface layer, and performing horizontal physical motion on the sea surface 

layer. The key parameter values used in the parameterization schemes of the models are mostly 

obtained from empirical formulas, sensitivity experiments, or observations. By comparing with the 

actual drift characteristics of the green tide, a better-performing scheme is selected from a multitude 

of possibilities (Wang et al., 2022; He et al., 2021). However, the sea conditions and weather 

processes in the Yellow Sea are complex and diverse, leading to large uncertainty in green tide path 

forecasts using a single deterministic forecast. This forecast uncertainty is amplified as the forecast 

duration increases, leading to a noticeable decline in forecast performance, with a relatively short 

time of predictability. At present, green tide path forecasts typically cover only 7 days (Palmer et 

al., 2014; Wu and Levinson, 2021; Jiao et al., 2022). 

Ensemble forecasting is a numerical weather prediction method proposed to reduce forecast 

uncertainty. It was first introduced by Epstein (1969) and Leith (1974) and is based on stochastic 

dynamic theory and the Monte Carlo method. By using different models or different initial 

perturbation techniques, a finite number of forecast samples are constructed, and by creating an   

"ensemble" of these samples, information is combined and errors are aggregated, transforming a 

single deterministic forecast into an uncertain forecast (Wu and Levinson, 2021). Studies have 

shown that ensemble forecasting can not only reduce uncertainty in forecasts and improve the skill 

of a single deterministic forecast but also extend the duration of useful forecasts. Moreover, it 

enables the calculation of probabilities for various outcomes on the basis of a range of forecast 

scenarios, thereby converting a single deterministic prediction into a probabilistic prediction. This 

approach also allows for a quantitative assessment of the forecast's inherent uncertainty. 

(Krishnamurti et al., 2000; Weigel et al., 2009; Roiha et al., 2010; Huo et al., 2019; Wu and Levinson, 

2021; Liu et al., 2023; Murphy et al., 2024). Currently, ensemble forecasting methods have been 

widely applied in the fields of typhoon track prediction, subseasonal-to-seasonal forecasting, and 

marine ecological forecasting. Weber (2003) demonstrated that ensemble forecasting can reduce the 

72-hour track forecast error of Atlantic hurricanes by more than 20%. Jacox et al. (2019) discussed 

the predictability of sea surface temperature (SST) in the California Current region on the basis of 

the Global Climate Ensemble Forecast System (NMME), establishing a forecasting method on a 

four-month timescale. Robinson et al. (2021) used a multimodel ensemble approach to predict the 

potential habitat distribution of the Pacific sand lance (Ammodytes personatus) in the Strait of 

Georgia, British Columbia, Canada, enhancing the accuracy of habitat distribution predictions for 

the Pacific sand lance. Murphy et al. (2024) developed the Southern Ocean Marine Ecosystem 

Model Ensemble (SOMEME), aiming to provide a scientific basis for the sustainable management 

of fishery resources and to ensure the health and biodiversity of the Southern Ocean ecosystem 

under climate change. 



 This study uses the Yellow Sea Green Tide Drift Model (YSGTDM) to construct an ensemble 

forecast of the Yellow Sea green tide drift path, aiming to improve the forecast ability and effective 

forecast duration of the current Yellow Sea Green tide path forecasts. Through an ensemble forecast 

experiment of the Yellow Sea green tide drift path combined with green tide remote sensing 

monitoring data, the improvement effect of the ensemble forecast method on Yellow Sea green tide 

drift path forecasts is analyzed, and the applicability of this forecast method in the simulation of the 

Yellow Sea green tide drift path is discussed. The ensemble forecast framework for the green tide 

path in the Yellow Sea constructed in this paper is a long-term forecast at a scale above the 

subseasonal-to-seasonal range. To facilitate the comparison and analysis of the performance 

improvement of different forecast durations using the ensemble forecast approach for green tide 

path forecasting, the forecast timescale is divided into the following categories on the basis of the 

division of forecast lead times in meteorology and the characteristics of model simulation results: 

Forecasts within 5 days after the model begins are defined as short-range forecasts (SRF), forecasts 

from 5 to 15 days are defined as medium-range forecasts (MRF), forecasts from 15 to 31 days are 

extended-range forecasts (ERF), forecasts from 32 to 61 days are defined as subseasonal-to-seasonal 

(S2S) forecasts, and forecasts beyond 61 days are long-range forecasts (LRF). For the prevention 

and control of green tide disasters, the reference value of path forecasts is more significantly 

reflected in the initial occurrence and rapid development stages of green tides (from SRF to S2S 

forecast). In the later stages of green tide outbreaks to the decline phase, government departments 

organize large-scale efforts to intercept and salvage U. prolifera on the sea surface, and the position 

of the dense area of green tides is greatly influenced by human factors. Therefore, this paper does 

not present the results and verification of LRFs. 

2 Model, data and experimental design 

2.1 Yellow Sea Green Tide Drift Model 

The YSGTDM uses the Lagrangian particle tracking method, which has a horizontal resolution 

of 1/36° and a temporal resolution of 1 h. The drift of the Yellow Sea green tide is driven mainly by 

surface winds and upper ocean currents. At the same time, under the influence of the Coriolis force, 

the direction of the green tide drift forms an angle with the wind direction. The Lagrangian method 

is used to calculate the drift path of U. prolifera as follows (Wang et al., 2022):  

{

𝑑𝑥𝑖

𝑑𝑡
= 𝑅1 ∙ 𝑢𝑎 + 𝑅2 ∙ 𝑉𝑑 ∙ cos(𝜗𝑖 − 𝜗0)

𝑑𝑦𝑖

𝑑𝑡
= 𝑅1 ∙ 𝑣𝑎 + 𝑅2 ∙ 𝑉𝑑 ∙ sin(𝜗𝑖 − 𝜗0)

                      (1) 

where 𝑥𝑖 and 𝑦𝑖 represent the positions of the U. prolifera particle 𝑖 in the 𝑥 and 𝑦 directions 

at time 𝑡, respectively; 𝑢𝑎 and 𝑣𝑎 represent the current speeds in the 𝑥 and 𝑦 directions, with 

units of m/s; 𝑉𝑑 represents the wind speed, with units of m/s; and 𝑅1 and 𝑅2 represent the drag 

coefficients for the current and wind, respectively, which reflect the deceleration of U. prolifera 

particles during the peak proliferation phase of the green tide, influenced by various factors, such 

as gravity, wave action, buoyancy, and turbulence; and 𝜗𝑖 represents the angle between the wind 

direction and the 𝑥 direction. 𝜗0 represents the angle of deflection in the movement direction of 



U. prolifera due to the Coriolis effect. 

2.2 Model configuration 

This study utilizes the Yellow Sea green tide event in 2016 as a case study for ensemble forecast 

experiments. The simulated area spans 119~125°E, 32~38°N. The model outputs green tide 

simulation results every hour, encompassing the geographic coordinates and environmental 

information at the location of each U. prolifera particle. For ease of statistical analysis, computation, 

and comparison with actual conditions, the results provided every day at 00:00 are considered the 

forecast results for that day, and this approach is not further elaborated upon in subsequent 

discussions. 

The YSGTDM uses input the forcing data for both the current field and the wind field. The 

current field data are sourced from the high-resolution Regional Ocean Modeling System (ROMS) 

physical model, which covers an area 105–135°E, 24–41°N, including the Bohai Sea, Yellow Sea, 

and East China Sea. It has a horizontal resolution of 1/36°, 40 vertical layers, and a temporal 

resolution of 1 h. After inspection and optimization, this model is capable of effectively reflecting 

the spatiotemporal distribution and changes in the simulated marine area (Lee et al., 2018; Li et al., 

2021). The wind field data are derived from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) ERA5 single-layer 10 m wind data, with a horizontal resolution of 0.25° and 

a temporal resolution of 1h.  

The initial time, simulation duration and initial release position of U. prolifera particles in the 

model refer to the optimized remote sensing analysis data of green tides (Wang et al., 2022). In 2016, 

remote sensing first detected the green tide on May 17th (CST), and the last detection of the green 

tide occurred on July 30th. In the model, these 2 dates are set as the start and end times of the model 

run, with a total simulation duration of 75 days. To simplify the transport process of green tides in 

the Yellow Sea within ensemble forecasting experiments, this research currently does not consider 

variations in the distribution area of green tides. During each model run, a single particle is released 

to simulate the drift path, thereby concentrating the analysis on the specific changes in the trajectory 

of green tides. The initial release position of the particle is located at 121.6215°E, 33.5670°N, which 

is the center of the dense area of the green tide distribution first detected by remote sensing. 

2.3 Building ensemble members based on the stochastic parameter perturbation scheme 

The uncertainty in the parameter values of the parameterization scheme in the YSGTDM is 

one of the sources of prediction errors for the drifting path of green tides in the Yellow Sea, and it 

is a common type of model error. To address model errors caused by the uncertainty of physical 

process parameterization schemes, the stochastically perturbed parameterization (SPP) scheme is 

widely used internationally (McCabe et al., 2016). This method builds ensemble members by 

directly perturbing important parameters in the model through stochastic physical methods while 

maintaining the internal consistency of the physical parameterization scheme (Buizza et al., 1999; 

Ollinaho et al., 2016). This perturbation is considered to be a more physically reasonable method 

from the source of model uncertainty, and many studies have shown that this method can improve 

the reliability and probabilistic forecasting skills of ensemble forecast systems to a certain extent 

(Leutbecher et al., 2017; Christensen, 2020; Lang et al., 2021; Peng et al., 2022; Qiao et al., 2023). 



According to Equation (1), there are three key parameters in the model: the current drag coefficient, 

the wind drag coefficient, and the angle of motion deviation caused by the Coriolis force. This study 

introduces the SPP scheme to perturb these three key parameters to represent the uncertainty in the 

green tide drifting process. 

The ensemble forecast members are typically composed of one control member and multiple 

ensemble members perturbed from the control member. Calibrating the parameter values and 

variable values of the control member is the first step in building the ensemble members. On the 

basis of the relevant literature and previous experiments, the sea current drag coefficient in the green 

tide drift model usually ranges from 0.8 to 1.0 (Li et al., 2014; Ji et al., 2018; He et al., 2021; Zhou 

et al., 2021; Wang et al., 2022), and the wind drag coefficient generally ranges from 0.01 to 0.05 (Li 

et al., 2014; Ji et al., 2018; Zhao et al., 2018). The direction of green tide drift and the wind direction 

range from 5° ~ 40° (Yi et al., 2010; Liu et al., 2023). The parameter values of the ensemble control 

member 𝛽𝑐𝑡𝑟 , the standard deviation of the parameter perturbation 𝜎 , and the range of the 

parameter perturbation are determined by sensitivity experiments, as shown in Table 1. 

Table. 1 Parameters chosen within the SPP framework. 

Parameter/ variable Physical description 𝛽𝑐𝑡𝑟 (𝜇) 𝜎 [min, max] 

𝑅1 current drag coefficient 0.4 0.1 [0.3, 0.55] 

𝑅2 wind drag coefficient 0.02 0.01 [0.005, 0.03] 

𝜗0 deflection angle caused by wind action 25° 15° [5°, 45°] 

After the parameter values of the ensemble control member 𝛽𝑐𝑡𝑟, the perturbation standard 

deviation 𝜎, and the range of perturbations are determined, the SPP scheme is further introduced 

to construct the ensemble members. In the model, each parameter is independently perturbed 

without interference, which is different from the random perturbation field that changes with time 

or space in the atmospheric model (Ollinaho et al., 2016; Peng et al., 2022). In this study, the 

parameter values do not change with time or space after the initial setting. The specific method is 

as follows. First, 50 normally distributed random numbers 𝜑𝑘 (k=1, 2, …, 50) with a mean of 𝛽𝑐𝑡𝑟 

and a standard deviation of 𝜎 are generated, and those that fall outside the [min, max] constraint 

interval are discarded (Peng et al., 2022). The remaining random numbers are the random 

perturbation values 𝛽𝑘  for that parameter. The perturbed parameter values are then randomly 

combined, and the parameterization scheme constructed by the combination is the parameterization 

scheme for each ensemble member. The formula is as follows: 

𝛽𝑘 = 𝜑𝑘       𝜑𝑘~𝑁(𝜇, 𝜎2), 𝛽𝑘 ∈ [min, max]                  (2) 

where 𝛽𝑘 is the random perturbation value, with a numerical range between the minimum and 

maximum perturbation values; 𝜑𝑘 is the perturbation random number, which conforms to a normal 

distribution; 𝜇 is the perturbation mean; and 𝜎 is the perturbation standard deviation. Considering 

the maximization of the ensemble members' dispersion and the computational cost (Milliff et al., 

2011), the Yellow Sea green tide drift path ensemble forecast experiment consists of 15 ensemble 

members, including 1 control member and 14 perturbation members. 

2.4 Experimental design and verification 

This research encompasses a comprehensive experimental framework consisting of 15 distinct 



trials. The first set is the control experiment, which provides the green tide path forecast results from 

the ensemble control member selected by the sensitivity experiment without any perturbation. The 

2nd to 15th sets are the ensemble experiments that introduce the SPP scheme and simultaneously 

perturb 3 key parameters to obtain the green tide path forecast results of the 14 perturbation members. 

Each simulation is conducted once, and none of the 15 experiments use initial value perturbations, 

as shown in Table 2. 

Table. 2 Design of the Yellow Sea Green Tide Drift Path Experiment 

Test type Test group Model physical disturbance scheme Initial disturbance 

CTL 1 None None 

SPP 2~15 Disturbance of key parameters None 

The verification method used in this study evaluates the forecast effectiveness of both single 

model forecasting methods and ensemble forecasting methods by calculating the errors between the 

forecasted and actual positions. The error calculation includes the absolute error in distance and the 

distance errors in both the meridional and zonal directions. Owing to the significant influence of 

weather conditions on the satellite remote sensing monitoring of green tides, it is difficult to obtain 

continuous observational data. Therefore, this paper uses only the green tide remote sensing 

observation data from days that are less affected by weather conditions, which represent the drifting 

characteristics of the green tide during different periods. The actual drifting path of the green tide is 

determined by the center position of the dense area of the green tide calculated for the day, and the 

simulation outcomes of the model are verified on this basis. 

The satellite remote sensing data used in the study come from Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensor data (https://ladsweb.modaps.eosdis.nasa.gov/search/), which 

are freely available from the National Aeronautics and Space Administration (NASA) (Hu et al., 

2010). MODIS is a sensor onboard the Terra and Aqua satellites and features 36 bands, all at 

moderate resolution. The Terra and Aqua satellites alternate in their overpasses, with a frequency of 

twice a day. The selected remote sensing image inversion data are the MODIS Level 1B HDF data 

from the Terra and Aqua satellites under cloud-free or cloudy conditions, with a spatial resolution 

of 250 m. It includes data from MODIS bands 1 and 2, with spectral ranges of 620–670 nm and 

841–876 nm, respectively, corresponding to the red and near-infrared bands. After geometric 

correction of the MODIS data images, the normalized difference vegetation index (NDVI) is 

employed to extract the green tide information in the Yellow Sea (Xing and Hu, 2016). 

3 Forecast results 

3.1 Deterministic forecast results of the Yellow Sea green tide path 

Fig. 1 compares the drifting paths of the green tide given by the two forecasting methods with 

the actual path. Fig. 1a shows the single deterministic green tide path forecast given by a single 

model, which is also the control member forecast result of the ensemble, referred to as the control 

forecast in the following text, and Fig. 1b shows the ensemble mean forecast of the green tide, which 

is obtained by directly calculating the arithmetic mean of all ensemble members. Fig. 1 shows that 

the control forecast given by the YSGTDM and the ensemble mean forecast of the Yellow Sea green 



tide reflect the drifting characteristics of the green tide in 2016 quite well. After the model releases 

the U. prolifera particles at the initial position, the particles continue to drift northward with the sea 

surface current. During the northward movement, the particles tend to move first westward and then 

eastward, with the turning position located at approximately 35° N and the landing location in the 

sea area of Weihai city, Shandong Peninsula. 

The remote sensing positions of the green tide are compared with the forecast positions in Fig. 

1a and Fig. 1b. The main differences between the control forecast and the ensemble forecast lie in 

the drifting trajectory and the movement speed of the green tide. With respect to the drifting 

trajectory of the green tide, the ensemble average path does not significantly differ from the control 

forecast path overall, but both the ensemble average path and the point of landfall of the green tide 

are further east than the control forecast. As the forecast duration increases, the particle speed in the 

control forecast is noticeably faster than that in the ensemble forecast. The control forecast predicts 

that the dense area of the green tide will reach the shore within the S2S, whereas the ensemble 

average path shows that the dense area of the green tide remains offshore of Weihai city without 

making landfall by the end of the simulation.  

We further analyze the changes in the simulated positions across various forecast periods. 

There is little difference between the drift trajectories of the two prediction methods in terms of the 

SRF and MRF. The simulated positions are located south of the remote sensing position, indicating 

that the drift speed of the simulated particles in both the control forecast and the ensemble forecast 

is slower than the actual speed in these two periods. 

In the ERF, the simulated positions of both the control member and the ensemble average are 

to the west of the actual position. In terms of the direction of particle movement, the ensemble 

average position is comparable to the remote sensing position on June 17, whereas the control 

forecast position is north of the remote sensing position. This indicates that there is a significant 

difference in the simulated particle speed between the control forecast and the ensemble forecast 

during this period, with the ensemble forecast providing a better simulation of the green tide position 

than the control forecast does.  

In the S2S forecast, there are differences between the ensemble forecast and the remote sensing 

position of the green tide, but the distance between the two is always relatively small. In contrast, 

the position predicted by the control forecast is quite far from the actual position. On the basis of 

the movement trajectory of the simulated particles, the ensemble forecast position does not exceed 

36°N by June 25, whereas the control forecast position is already near the actual position by July 2. 

On July 2, the positions of the control forecast and the ensemble forecast are northeast and southeast 

of the actual position, respectively, indicating that during this forecast period, the control forecast 

simulates a significantly faster northward drift speed of the green tide than the ensemble forecast 

does. 

In summary, both the single deterministic forecast and the ensemble mean forecast can simulate 

the drifting characteristics of the green tide in 2016 quite well. The ensemble forecast method 

simulates the drifting trajectory of the green tide more closely to the actual situation, and the forecast 



quality of the green tide path is higher than that of the prediction using a single model. The ensemble 

forecast method mainly improves the path forecast after the ERF period, but the improvement effect 

is not obvious for at the SRF and MRF scales. 

 

Fig. 1. Compares the control forecast path (a) and the ensemble mean forecast path (b) with the satellite remote 

sensing positions of the green tide. The same colored segments and symbols represent the same forecast lead time, 

and the positions marked on the solid line correspond to the remote sensing positions of the same day, with the 

remote sensing positions marked as "+". In the legend, SRF, MRF, ERF, S2S, and LRF represent different forecast 

durations, which are short-range forecasts, medium-range forecasts, extended-range forecasts, subseasonal-to-

seasonal forecasts, and long-range forecasts, respectively.  

3.2 Probabilistic forecast results of the Yellow Sea green tide path 

Using mathematical statistical methods, it is possible to calculate a probabilistic forecast of the 

Yellow Sea green tide path. First, the Yellow Sea area needs to be gridded, and the horizontal 

resolution of each grid is defined as 1.75°. The probability of the occurrence of dense green tide 

areas is defined as the ratio of the number of ensemble members within the grid to the total number 

of ensemble members. The more ensemble members that appear within the grid, the greater the 

probability that dense green tide areas have passed through that grid. Fig.2 shows the probability 

forecast of the potential path of the green tide dense area, with a forecast period from May 18 to 

July 30. This study classifies the probability of the green tide dense area passing through a point 

into 5 forecast levels: very high probability (>50%), high probability (37.5%~50%), moderate 

probability (25%~37.5%), and low probability (<25%), and no color indicates that there is no green 

tide dense area passing through that grid. 



 

Fig. 2. Probabilistic forecast of the path of the green tide dense area. The valid forecast duration is May 17, 2016 + 

73 d. The blue solid line represents the ensemble mean forecast path, which is obtained by calculating the average 

of all ensemble member forecast paths. The green solid line represents the control forecast path provided by the 

control member. The gray solid lines represent the individual forecast paths given by each ensemble member. The 

center position of the green tide distribution observed by remote sensing on May 17 is marked with the "+". The 

color bar delineates the probability forecast levels for the passage of dense green tide areas: red indicates a very high 

probability (>50%), orange signifies a high probability (37.5%~50%), yellow represents a moderate probability 

(25%~37.5%), green denotes a low probability (< 25%), and the absence of color implies that no dense green tide 

areas will pass through. 

The drifting paths of the green tide over the entire 75-day forecast for the 14 ensemble member 

forecasts, control forecast, and ensemble mean forecast are depicted in Fig. 2. The U. prolifera 

particles in the control member and the 14 ensemble members are released at the same location on 

May 17. In the initial phase of the simulation, all the members exhibit a high degree of similarity, 

with the forecasted green tide paths generally drifting northward. The paths initially veer westward 

to approximately 35° N before turning eastward, which is consistent with the previous description. 

The distribution of the green tide trajectories simulated by the 15 members clearly reveals that as 

the forecast duration increases, the drifting paths of the green tide begin to diverge. The path forecast 

uncertainty is amplified with the extension of the forecast time. The ensemble forecasting method 

scientifically describes the uncertainty of the green tide patches during the actual drifting process. 

According to the calculated probabilistic forecast results of the drifting paths, the dense green 



tide area in 2016 mainly approaches the Shandong Peninsula from the central Yellow Sea, with the 

dense green tide area reaching the coast in the region of Qingdao city to Weihai city. The 

probabilistic forecast can accurately predict the sea areas through which the dense green tide area 

will drift, providing a scientific basis for early interception and the organization of salvage work 

related to green tide prevention and control. Additionally, the probabilistic forecast quantitatively 

calculates the magnitude of uncertainty in the green tide path forecast, which is an important 

improvement over the single deterministic forecast of green tide drifting. 

3.3 Yellow Sea green tide path forecast error 

The error between the forecast path and the actual position is a critical reflection of the 

predictive ability of the model regarding the drifting path of green tides. Fig. 3 shows the cumulative 

absolute error between the 14 ensemble members, the control forecast, and the ensemble mean 

forecast with actual conditions over different forecast periods. It comprehensively demonstrates the 

magnitude of the absolute error between the ensemble forecast members and actual conditions at 

various forecast times, as well as the overall simulation effect. According to Fig. 3, it is evident that 

the absolute error for the 14 ensemble members and the control member in the SRF period are quite 

similar, averaging 30.2 km. The MRF period has the smallest absolute error among all forecast 

periods, where the absolute error of the 9th member from the actual situation on June 1 is merely 

5.0 km. After the ERF period, the absolute error between the ensemble member forecasts and the 

actual situation gradually increases, with the 1st and 6th members having the largest error distances 

in the ERF and S2S periods, respectively. The cumulative absolute error of the ensemble average 

over 5 forecast periods is 194.4 km, which is lower than those of all the ensemble members and the 

control member. Moreover, the absolute errors tested over the 6 periods are similar in magnitude, 

averaging 32.4 km without any extreme cases, which is 16.4 km less than the average absolute error 

of the control forecast. Compared with the ensemble average, the cumulative absolute error of the 

8th member is 195.6 km, which is smaller than that of all the ensemble members and the control 

member but slightly larger than that of the ensemble mean forecast. Additionally, the absolute errors 

of these member distribution characteristics are most similar to the ensemble average, with a 

relatively uniform error distribution across different forecast periods. Therefore, the 8th ensemble 

member performs the best among the 15 ensemble forecast members.  

To analyze the applicability of the two forecasting methods, a daily analysis was conducted on 

6 days in Fig. 3, to compare the differences between the ensemble mean forecast and the single 

deterministic forecast. Although the accumulated absolute error of the ensemble average forecast is 

less than that of the control forecast, the absolute error in the distance between the ensemble forecast 

and the actual situation is not always less than that of the control forecast at different forecast 

durations. As shown in Fig. 4, the absolute error of the ensemble forecast is slightly greater than the 

control forecast error in the SRF and MRF periods. After the ERF period, the absolute error in the 

distance for the ensemble forecast is significantly less than that of the control forecast. On June 25, 

the absolute error of the ensemble forecast decreases by 47.1% compared with that of the control 

forecast. Overall, the absolute error distance of both the ensemble and control forecasts first 



decreases and then increases with the forecast time, and the time when the minimum absolute error 

occurs for the two forecasting methods is not synchronized; the minimum absolute error of the 

ensemble forecast occurs during the extension period, lagging behind the control forecast. 

 

Fig. 3. Cumulative absolute error of 14 ensemble members, control member, and ensemble mean. 

 

Fig. 4. Absolute error of control forecast and ensemble forecast (bar chart, left axis), as well as meridional and zonal 

errors (line chart, right axis). 

To explore the reasons for the characteristics of the changes in the absolute error in the distance, 

Fig. 4 simultaneously displays the error in the east‒west and north‒south directions. Here, a positive 

error indicates that the forecasted position is east or north of the actual position, whereas a negative 

error indicates the opposite direction. The slope of the error curve represents the change in the speed 

of the simulated green tide drift. Fig. 4 shows that the velocity directions in the east‒west and north‒



south directions are relatively consistent between the control forecast and the ensemble forecast, but 

there are differences in the magnitude of the speed. The average error in the east‒west distance 

between the two forecasting methods is 7.4 km, which is not a significant difference. In the early 

stages of the forecast, the forecasted positions of both methods are west of the actual situation, and 

in the ERF period, the position between the simulation and the actual situation shifts from west to 

east, with the control forecast turning earlier than the ensemble forecast. In terms of the north‒south 

error, the changes in the SRF period of the ensemble and control forecasts are almost the same. 

However, from May 25 to June 25, the north‒south error changes in the control forecast are 

significantly faster than those in the ensemble forecast, with a steeper slope in the error, indicating 

that the control forecast simulates a faster northward drifting speed of the green tide than the 

ensemble forecast does. 

According to the error test results, the ensemble forecasting method based on the SPP scheme 

does not significantly improve the forecasting ability in the SRF or MRF periods. However, it 

significantly improves the forecast effect for predictions beyond 15 days, with the absolute error 

being within 50 km and superior that of to the single deterministic forecasting method. The 

ensemble forecast mainly improves the path forecast of the green tide drift by reducing the simulated 

speed of the green tide drifting northward. 

4 Discussion 

4.1 Ensemble spread  

Within a reasonable range of parameter perturbations, ensemble forecasting generally does not 

exhibit excessive divergence among ensemble members. The spread, which is calculated for 

different forecast periods, can be used to measure the uncertainty of variables in the forecast. The 

ensemble spread is the standard deviation of the various variables in the model output, representing 

the degree of divergence of the ensemble samples, and is an important indicator for increasing 

confidence in the ensemble mean forecast. The larger the spread is, the lower the predictability. The 

formula is as follows, 

𝑠𝑝𝑟𝑒𝑎𝑑 = √
1

𝑁−1
∑ (𝑦̂𝑖 − 𝑦̅𝑖)2𝑁

𝑖=1                            (3) 

here, N is the total number of ensemble members, 𝑦̂𝑖 is the forecast value of the i-th ensemble 

member, and 𝑦̅𝑖 is the ensemble average of the forecast values of the ensemble members. In this 

study, the dispersion of the ensemble forecast for the green tide drift path is represented by 

calculating the distance between the forecasted position of each ensemble member and the ensemble 

average forecasted position.  

In Fig. 5a, the path distribution characteristics of all the ensemble members across different 

forecast periods are illustrated. Correspondingly, Fig. 5b presents the spread of the ensemble 

members' forecasted paths for each period. Overall, the initial spread of U. prolifera particles is 

relatively small due to the limited release positions. However, the ensemble spread increases rapidly 

once the model is initiated. During the SRF and MRF periods, the simulated green tide paths of the 

15 ensemble members are relatively concentrated, with a small spread, averaging only 4.4 km and 



16.1 km, respectively. By the ERF period, the simulated paths of the 15 members show significant 

divergence. The U. prolifera particles from the different models drift northward at noticeably 

different speeds, and the spread in Fig. 5b for this period increases rapidly from 21.0 km to 49.1 km. 

The spread among the ensemble members subsequently continues to increase and reaches its 

maximum value of 80.4 km on day 46 during the S2S period. Later, during the LRF period, as the 

U. prolifera particles gradually reach the southern sea area of the Shandong Peninsula, the ensemble 

spread briefly decreases before rising again. 

The reason for the change in the ensemble spread during the LRF period is due to the physical 

boundary constraints. In reality, U. prolifera cannot cross these boundaries. U. prolifera particles, 

after reaching the shore (and being blocked by the physical boundary), return to the sea to continue 

moving with ocean currents. As shown in Fig. 5a, some ensemble members simulate the drift of the 

green tide and have already landed on the coastal areas of the Shandong Peninsula during the S2S 

period. The coastal current speed is not as fast as that in the open sea, so the position change of these 

particles is relatively small. On the other hand, other model particles that have not reached the shore 

continue to drift toward the Shandong Peninsula with the sea surface flow field. The east‒west 

distance does not change significantly, whereas the north‒south distance gradually decreases, 

resulting in an overall trend of decreasing spread. By the 67th day, most of the members have arrived 

at the Shandong Peninsula, but a few members do not land on the Shandong Peninsula and continue 

to drift northeastward at sea, so the overall spread increases again. 

 

Fig. 5. (a) The green tide forecast paths for ensemble members, control member, and ensemble mean across different 

forecast periods; (b) The ensemble dispersion of the Yellow Sea green tide path ensemble forecast model across 

different forecast periods. 

4.2 Number of ensemble members 



In terms of statistical averages, ensemble forecasts need to construct a sufficient number of 

ensemble members within a reasonable range to reflect all situations that have actual possibilities. 

However, in practical applications, the number of ensemble members needs to be reasonable on the 

basis of the different forecast targets and the limitations of computation, operation, and maintenance 

costs. In general, a minimum of 10 ensemble members is required to more effectively quantify the 

spread in ensemble forecasting (Milliff et al., 2011). This paper constructs an effective number of 

members of 15, to reduce computational costs and shorten the running time of ensemble forecasts, 

further explores how many members need to be selected for integration to achieve a stable and better 

forecast effect, and compares the path error situations of forecast results integrated using 1 to 15 

members (Qi et al., 2014; Zhang and Yu, 2017).  

In this work, the ensemble forecast method is selected to improve the forecast period with 

significant effects, and path error statistics are obtained accordingly, as shown in Fig. 6. In the 

statistics, 1 member is used as the control member in the ensemble forecast, whereas members 2 to 

14 are the average error values of all random combinations among the 15 ensemble forecast 

members. For example, when conducting an ensemble with 14 members, the existing 15 ensemble 

members can be randomly combined to generate 14 distinct results of the ensemble mean path. The 

absolute error between each of these 14 results of the ensemble mean path and the observed path is 

subsequently calculated individually. Ultimately, the average of these 14 absolute errors is computed, 

yielding the path error statistic for the ensemble comprising 14 members. The calculation method 

for the path error with other numbers of ensemble members follows the same logic. 

According to the statistical results, the absolute error between the ensemble forecast simulated 

green tide positions and the actual conditions exhibits similar variation characteristics at the 4 

different times. As the number of ensemble members increases, the absolute error in the forecast 

path initially significantly fluctuates. However, once a certain threshold of members is reached, the 

absolute error begins to stabilize. Fig. 6 shows that when 1~7 members are used for the ensemble, 

the forecast error for the green tide path in the Yellow Sea is highly unstable and subject to large 

variations. Beyond 7 members, the magnitude of these fluctuations diminishes progressively. When 

the ensemble size reaches 10~15 members, the path error achieves a stable state. Therefore, the 

ensemble forecast of the green tide path in the Yellow Sea using 12 ensemble members is nearly 

saturated, and further increasing the number of members does not significantly improve the forecast 

effect of the green tide path. This finding further clarifies that in the ensemble forecast of the Yellow 

Sea green tide path, which is based on the SPP scheme, reducing the error of the green tide drift 

path by merely increasing the number of ensemble members is limited.  

In summary, ensemble forecasts of the green tide drifting path in the Yellow Sea requires at 

least 10 members to ensure that the ensemble forecast can stably control the forecast error. On the 

basis of this statistic, provided that the discretization of the perturbation parameter values is 

appropriate, follow-up studies can control the number of ensemble members within the range of 10 

to 13 members according to actual forecast application needs, which can improve the operational 

efficiency of path forecasting and reduce the computational and maintenance costs of forecasts. 



 

Fig. 6. The impact of the number of ensemble members on the error of the green tide drift path comparison. 

5 Conclusion 

This study introduces a stochastic perturbation parameter scheme for key parameters in the 

YSGTDM, constructing an ensemble forecast of the Yellow Sea green tide drift path. The results 

show that the ensemble forecast of the Yellow Sea green tide drift path provides ensemble mean and 

probabilistic forecasts that can better simulate the drift characteristics of the Yellow Sea green tide 

in 2016, showing high consistency with actual observations. The probabilistic forecast of the drift 

path in dense green tide areas is a significant advantage over single deterministic forecasts, as it 

quantitatively forecasts the uncertainty in the green tide drift process and provides more scientific 

guidance for the prevention and mitigation of green tide related ecological disasters. 

Using MODIS remote sensing data, a comparative verification was conducted between the 

single model method and the ensemble forecast method. The ensemble forecast method effectively 

enhanced the forecast skill for forecast periods of more than 15 days, extending the effective forecast 

duration of existing path forecasts. Compared with the use of a single model, ensemble forecasting 

improved the northward drift speed of the green tide, and the forecast error of the green tide drift 

path for forecast periods over 15 days was reduced by an average of 32%. 

In this study, we initially applied ensemble forecasting methods to simulate the drift path of 

the green tide in the Yellow Sea, revealing significant advancements in the existing forecasting 

techniques for this phenomenon. However, the long-term transport of Yellow Sea green tides on the 



sea surface is a complex process. It involves not only the dynamic influences of sea surface currents 

and winds on the drift of green tides but also the ecological responses of U. prolifera to the marine 

environment. As the Yellow Sea green tide grows and decays, it alters the overall distribution and 

movement speed of the green tide, thereby affecting its overall drift trajectory. This aspect was not 

considered in the current study, where the simulation of single particles was used to simplify the 

experimental design. 

In future research, building upon existing ensemble forecasting methods for the Yellow Sea 

green tide drift path, we will further explore the integration of ecological processes. This integration 

aims to broaden the application of Yellow Sea green tide forecasting in operational settings and 

provide a robust scientific foundation for the prevention and management of ecological disasters 

associated with Yellow Sea green tides. 
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